Udemy - Statistics for Data Science and Business Analysis [GC]

seeders: 8 leechers: 6
Added 5 years ago by escobar623 in Other
Downloaded 22 times.
1337x.to
Udemy - Statistics for Data Science and Business Analysis [GC]

Torrent Contents Size: 2.8 GB

Udemy - Statistics for Data Science and Business Analysis [GC]
▼ show more 282 files
1. Bonus lecture Next steps.html
HTML
3.5 KB
1. Calculating confidence intervals for two means with dependent samples.mp4
MP4
70.5 MB
1. Calculating confidence intervals for two means with dependent samples.srt
SRT
7.9 KB
1. Decomposing the linear regression model - understanding its nuts and bolts.mp4
MP4
42.2 MB
1. Decomposing the linear regression model - understanding its nuts and bolts.srt
SRT
4.2 KB
1. Dummy variables.mp4
MP4
38.2 MB
1. Dummy variables.srt
SRT
6.1 KB
1. Introduction to inferential statistics.mp4
MP4
15.5 MB
1. Introduction to inferential statistics.srt
SRT
1.6 KB
1. Introduction to regression analysis.mp4
MP4
19.4 MB
1. Introduction to regression analysis.srt
SRT
1.5 KB
1. OLS assumptions.mp4
MP4
19.4 MB
1. OLS assumptions.srt
SRT
3 KB
1. Practical example hypothesis testing.mp4
MP4
69.4 MB
1. Practical example hypothesis testing.srt
SRT
8.1 KB
1. Practical example inferential statistics.mp4
MP4
102.6 MB
1. Practical example inferential statistics.srt
SRT
13.3 KB
1. Practical example regression analysis.mp4
MP4
129.3 MB
1. Practical example regression analysis.srt
SRT
17.5 KB
1. Practical example.mp4
MP4
160.5 MB
1. Practical example.srt
SRT
19.7 KB
1. Test for the mean. Population variance known.mp4
MP4
54.3 MB
1. Test for the mean. Population variance known.srt
SRT
7.5 KB
1. The main measures of central tendency mean, median and mode.mp4
MP4
37.1 MB
1. The main measures of central tendency mean, median and mode.srt
SRT
5.6 KB
1. The null and the alternative hypothesis.mp4
MP4
92.2 MB
1. The null and the alternative hypothesis.srt
SRT
7 KB
1. The various types of data we can work with.mp4
MP4
72.6 MB
1. The various types of data we can work with.srt
SRT
5.9 KB
1. Understanding the difference between a population and a sample.mp4
MP4
58 MB
1. Understanding the difference between a population and a sample.srt
SRT
5.5 KB
1. What does the course cover.mp4
MP4
68.6 MB
1. What does the course cover.srt
SRT
5.6 KB
1. Working with estimators and estimates.mp4
MP4
47.8 MB
1. Working with estimators and estimates.srt
SRT
3.8 KB
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx
XLSX
146.5 KB
1.1 2.7. Mean, median and mode_lesson.xlsx
XLSX
10.5 KB
1.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx
XLSX
10.5 KB
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx
XLSX
1.7 MB
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx
XLSX
51.7 KB
1.1 4.4. Test for the mean. Population variance known_lesson.xlsx
XLSX
11 KB
1.1 5.20. Dummy variables_lesson.xlsx
XLSX
25.2 KB
1.1 5.21. Regression_Analysis_practical_example.xlsx
XLSX
1.4 MB
1.1 Course notes_descriptive_statistics.pdf
PDF
482.2 KB
1.1 Course notes_hypothesis_testing.pdf
PDF
656.4 KB
1.1 Course notes_inferential statistics.pdf
PDF
382.3 KB
1.1 Course notes_regression_analysis.pdf
PDF
270.1 KB
1.1 Glossary.xlsx
XLSX
20 KB
1.1 Statistics Glossary.xlsx
XLSX
20.3 KB
1.2 Course notes_descriptive_statistics.pdf
PDF
482.2 KB
10. A geometrical representation of the linear regression model.html
HTML
204.8 B
10. A4. No autocorrelation.html
HTML
204.8 B
10. Calculating confidence intervals within a population with an unknown variance.mp4
MP4
32.2 MB
10. Calculating confidence intervals within a population with an unknown variance.srt
SRT
5.1 KB
10. Numerical variables. Using a frequency distribution table. Exercise.html
HTML
102.4 B
10. Standard deviation and coefficient of variation. Exercise.html
HTML
102.4 B
10. Test for the mean. Independent samples (Part 1).html
HTML
102.4 B
10. The central limit theorem.html
HTML
204.8 B
10. The multiple linear regression model.mp4
MP4
19.1 MB
10. The multiple linear regression model.srt
SRT
3.3 KB
10.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
XLSX
12.6 KB
10.1 2.4.Numerical-variables.Frequency-distribution-table-exercise.xlsx
XLSX
12 KB
10.1 3.11. Population variance unknown, t-score_lesson.xlsx
XLSX
10.8 KB
10.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
XLSX
11.3 KB
10.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
XLSX
11.6 KB
10.2 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
XLSX
13.3 KB
10.2 3.11. The t-table.xlsx
XLSX
15.8 KB
10.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
XLSX
10.8 KB
11. A practical example - Reinforced learning.mp4
MP4
45.9 MB
11. A practical example - Reinforced learning.srt
SRT
7.4 KB
11. A5. No multicollinearity.mp4
MP4
26.6 MB
11. A5. No multicollinearity.srt
SRT
4.6 KB
11. Calculating and understanding covariance.mp4
MP4
27.5 MB
11. Calculating and understanding covariance.srt
SRT
4.8 KB
11. Histogram charts.mp4
MP4
13.8 MB
11. Histogram charts.srt
SRT
3.1 KB
11. Population variance unknown. T-score. Exercise.html
HTML
102.4 B
11. Standard error.mp4
MP4
22.8 MB
11. Standard error.srt
SRT
1.9 KB
11. Test for the mean. Independent samples (Part 2).mp4
MP4
36.4 MB
11. Test for the mean. Independent samples (Part 2).srt
SRT
5.1 KB
11. The multiple linear regression model.html
HTML
204.8 B
11.1 2.11. Covariance_lesson.xlsx
XLSX
24.9 KB
11.1 2.5. The Histogram_lesson.xlsx
XLSX
18.6 KB
11.1 3.11. Population variance unknown, t-score_exercise_solution.xlsx
XLSX
11.1 KB
11.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx
XLSX
9.3 KB
11.1 5.6. Example_lesson.xlsx
XLSX
23.5 KB
11.2 3.11. The t-table.xlsx
XLSX
15.8 KB
11.3 3.11. Population variance unknown, t-score_exercise.xlsx
XLSX
10.6 KB
12. A5. No multicollinearity.html
HTML
204.8 B
12. Covariance. Exercise.html
HTML
102.4 B
12. Histogram charts.html
HTML
204.8 B
12. Standard error.html
HTML
204.8 B
12. Test for the mean. Independent samples (Part 2).html
HTML
204.8 B
12. The adjusted R-squared.mp4
MP4
43.7 MB
12. The adjusted R-squared.srt
SRT
6.5 KB
12. What is a margin of error and why is it important in Statistics.mp4
MP4
47.2 MB
12. What is a margin of error and why is it important in Statistics.srt
SRT
6.1 KB
12.1 2.11. Covariance_exercise.xlsx
XLSX
20.2 KB
12.1 5.12. Adjusted R-squared_lesson.xlsx
XLSX
18.2 KB
12.2 2.11. Covariance_exercise_solution.xlsx
XLSX
29.5 KB
13. Histogram charts. Exercise.html
HTML
102.4 B
13. Margin of error.html
HTML
204.8 B
13. Test for the mean. Independent samples (Part 2). Exercise.html
HTML
102.4 B
13. The adjusted R-squared.html
HTML
204.8 B
13. The correlation coefficient.mp4
MP4
29.4 MB
13. The correlation coefficient.srt
SRT
4.6 KB
13.1 2.12. Correlation_lesson.xlsx
XLSX
25 KB
13.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
XLSX
10.5 KB
13.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf
PDF
289.1 KB
13.2 2.5.The-Histogram-exercise-solution.xlsx
XLSX
17.1 KB
13.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
XLSX
11.4 KB
13.3 2.5. The Histogram_exercise.xlsx
XLSX
15.5 KB
14. Correlation.html
HTML
204.8 B
14. Cross tables and scatter plots.mp4
MP4
39.8 MB
14. Cross tables and scatter plots.srt
SRT
6.6 KB
14. What does the F-statistic show us and why do we need to understand it.mp4
MP4
13.9 MB
14. What does the F-statistic show us and why do we need to understand it.srt
SRT
2.6 KB
14.1 2.6. Cross table and scatter plot.xlsx
XLSX
26.1 KB
15. Correlation coefficient.html
HTML
102.4 B
15. Cross Tables and Scatter Plots.html
HTML
204.8 B
15.1 2.12. Correlation_exercise_solution.xlsx
XLSX
29.5 KB
15.2 2.12. Correlation_exercise.xlsx
XLSX
29.3 KB
16. Cross tables and scatter plots. Exercise.html
HTML
102.4 B
16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx
XLSX
40.4 KB
16.2 2.6. Cross table and scatter plot_exercise.xlsx
XLSX
16.3 KB
2. Confidence intervals. Two means. Dependent samples. Exercise.html
HTML
102.4 B
2. Decomposition.html
HTML
204.8 B
2. Download all resources.html
HTML
716.8 B
2. Estimators and estimates.html
HTML
204.8 B
2. Further reading on null and alternative hypotheses.html
HTML
2.3 KB
2. Introduction.html
HTML
204.8 B
2. Mean, median and mode. Exercise.html
HTML
102.4 B
2. OLS assumptions.html
HTML
204.8 B
2. Population vs sample.html
HTML
204.8 B
2. Practical example descriptive statistics.html
HTML
102.4 B
2. Practical example hypothesis testing.html
HTML
102.4 B
2. Practical example inferential statistics.html
HTML
102.4 B
2. Test for the mean. Population variance known. Exercise.html
HTML
102.4 B
2. Types of data.html
HTML
204.8 B
2. What is a distribution.mp4
MP4
61.6 MB
2. What is a distribution.srt
SRT
5.8 KB
2.1 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
XLSX
120.3 KB
2.1 2.7. Mean, median and mode_exercise_solution.xlsx
XLSX
11.4 KB
2.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx
XLSX
13.7 KB
2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
XLSX
1.8 MB
2.1 3.2. What is a distribution_lesson.xlsx
XLSX
19.5 KB
2.1 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
XLSX
44 KB
2.1 4.4. Test for the mean. Population variance known_exercise_solution.xlsx
XLSX
11.2 KB
2.2 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
XLSX
146.4 KB
2.2 2.7. Mean, median and mode_exercise.xlsx
XLSX
10.9 KB
2.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx
XLSX
14.2 KB
2.2 3.17.Practical-example.Confidence-intervals-exercise.xlsx
XLSX
1.7 MB
2.2 4.10. Hypothesis testing section_practical example_exercise.xlsx
XLSX
43.4 KB
2.2 4.4. Test for the mean. Population variance known_exercise.xlsx
XLSX
11 KB
2.2 Course notes_inferential statistics.pdf
PDF
382.3 KB
3. A1. Linearity.mp4
MP4
12.1 MB
3. A1. Linearity.srt
SRT
2.4 KB
3. Calculating confidence intervals for two means with independent samples (part 1).mp4
MP4
28.8 MB
3. Calculating confidence intervals for two means with independent samples (part 1).srt
SRT
5.9 KB
3. Confidence intervals - an invaluable tool for decision making.mp4
MP4
49.9 MB
3. Confidence intervals - an invaluable tool for decision making.srt
SRT
3 KB
3. Correlation and causation.mp4
MP4
25.6 MB
3. Correlation and causation.srt
SRT
5.6 KB
3. Levels of measurement.mp4
MP4
54.4 MB
3. Levels of measurement.srt
SRT
4.6 KB
3. Measuring skewness.mp4
MP4
19.4 MB
3. Measuring skewness.srt
SRT
3.6 KB
3. Null vs alternative.html
HTML
204.8 B
3. What is R-squared and how does it help us.mp4
MP4
36.5 MB
3. What is R-squared and how does it help us.srt
SRT
6.4 KB
3. What is a distribution.html
HTML
204.8 B
3. What is the p-value and why is it one of the most useful tools for statisticians.mp4
MP4
55.9 MB
3. What is the p-value and why is it one of the most useful tools for statisticians.srt
SRT
5 KB
3.1 2.8. Skewness_lesson.xlsx
XLSX
34.6 KB
3.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx
XLSX
9.8 KB
3.1 Course notes_regression_analysis.pdf
PDF
270.1 KB
3.1 Online p-value calculator.pdf
PDF
1.2 MB
3.2 5.2. Correlation and causation_lesson.xlsx
XLSX
10.6 KB
4. A1. Linearity.html
HTML
204.8 B
4. Confidence intervals. Two means. Independent samples (Part 1). Exercise.html
HTML
102.4 B
4. Confidence intervals.html
HTML
204.8 B
4. Correlation and causation.html
HTML
204.8 B
4. Establishing a rejection region and a significance level.mp4
MP4
82.5 MB
4. Establishing a rejection region and a significance level.srt
SRT
8.7 KB
4. Levels of measurement.html
HTML
204.8 B
4. R-squared.html
HTML
204.8 B
4. Skewness.html
HTML
204.8 B
4. The Normal distribution.mp4
MP4
49.9 MB
4. The Normal distribution.srt
SRT
5 KB
4. p-value.html
HTML
204.8 B
4.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx
XLSX
10.1 KB
4.1 Course notes_hypothesis_testing.pdf
PDF
656.4 KB
4.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx
XLSX
9.8 KB
5. A2. No endogeneity.mp4
MP4
32.5 MB
5. A2. No endogeneity.srt
SRT
5.2 KB
5. Calculating confidence intervals for two means with independent samples (part 2).mp4
MP4
26.8 MB
5. Calculating confidence intervals for two means with independent samples (part 2).srt
SRT
4.4 KB
5. Calculating confidence intervals within a population with a known variance.mp4
MP4
78.2 MB
5. Calculating confidence intervals within a population with a known variance.srt
SRT
9.1 KB
5. Categorical variables. Visualization techniques for categorical variables.mp4
MP4
36.7 MB
5. Categorical variables. Visualization techniques for categorical variables.srt
SRT
6.3 KB
5. Rejection region and significance level.html
HTML
204.8 B
5. Skewness. Exercise.html
HTML
102.4 B
5. Test for the mean. Population variance unknown.mp4
MP4
40.3 MB
5. Test for the mean. Population variance unknown.srt
SRT
5.6 KB
5. The Normal distribution.html
HTML
204.8 B
5. The linear regression model made easy.mp4
MP4
51 MB
5. The linear regression model made easy.srt
SRT
7.1 KB
5. The ordinary least squares setting and its practical applications.mp4
MP4
20 MB
5. The ordinary least squares setting and its practical applications.srt
SRT
2.8 KB
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
XLSX
30.8 KB
5.1 2.8. Skewness_exercise.xlsx
XLSX
9.5 KB
5.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx
XLSX
9.5 KB
5.1 3.9. Population variance known, z-score_lesson.xlsx
XLSX
11.2 KB
5.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
XLSX
14.5 KB
5.2 2.8. Skewness_exercise_solution.xlsx
XLSX
19.8 KB
5.2 3.9.The-z-table.xlsx
XLSX
25.6 KB
6. A2. No endogeneity.html
HTML
204.8 B
6. Categorical variables. Visualization Techniques.html
HTML
204.8 B
6. Confidence intervals. Population variance known. Exercise.html
HTML
102.4 B
6. Confidence intervals. Two means. Independent samples (Part 2). Exercise.html
HTML
102.4 B
6. Measuring how data is spread out calculating variance.mp4
MP4
50.9 MB
6. Measuring how data is spread out calculating variance.srt
SRT
7.4 KB
6. Test for the mean. Population variance unknown. Exercise.html
HTML
102.4 B
6. The linear regression model.html
HTML
204.8 B
6. The ordinary least squares setting and its practical applications.html
HTML
204.8 B
6. The standard normal distribution.mp4
MP4
22.5 MB
6. The standard normal distribution.srt
SRT
3.9 KB
6. Type I error vs Type II error.mp4
MP4
43.9 MB
6. Type I error vs Type II error.srt
SRT
5.4 KB
6.1 2.9. Variance_lesson.xlsx
XLSX
10.1 KB
6.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx
XLSX
9.2 KB
6.1 3.4. Standard normal distribution_lesson.xlsx
XLSX
10.4 KB
6.1 3.9.The-z-table.xlsx
XLSX
25.6 KB
6.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
XLSX
12.6 KB
6.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx
XLSX
9.8 KB
6.2 3.9. Population variance known, z-score_exercise.xlsx
XLSX
10.8 KB
6.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
XLSX
11.3 KB
6.3 3.9. Population variance known, z-score_exercise_solution.xlsx
XLSX
11.2 KB
7. A3. Normality and homoscedasticity.mp4
MP4
40 MB
7. A3. Normality and homoscedasticity.srt
SRT
6.7 KB
7. Calculating confidence intervals for two means with independent samples (part 3).mp4
MP4
19.9 MB
7. Calculating confidence intervals for two means with independent samples (part 3).srt
SRT
1.9 KB
7. Categorical variables. Visualization techniques. Exercise.html
HTML
102.4 B
7. Confidence interval clarifications.mp4
MP4
57.1 MB
7. Confidence interval clarifications.srt
SRT
5.5 KB
7. Studying regression tables.mp4
MP4
36.8 MB
7. Studying regression tables.srt
SRT
6 KB
7. Test for the mean. Dependent samples.mp4
MP4
50.4 MB
7. Test for the mean. Dependent samples.srt
SRT
6.3 KB
7. The standard normal distribution.html
HTML
204.8 B
7. Type I error vs type II error.html
HTML
204.8 B
7. Variance. Exercise.html
HTML
102.4 B
7. What is the difference between correlation and regression.mp4
MP4
12.7 MB
7. What is the difference between correlation and regression.srt
SRT
2.1 KB
7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx
XLSX
15.2 KB
7.1 2.9. Variance_exercise.xlsx
XLSX
10.8 KB
7.1 4.7. Test for the mean. Dependent samples_lesson.xlsx
XLSX
9.8 KB
7.1 5.10.Regression-tables-lesson.xlsx
XLSX
12.5 KB
7.2 2.9. Variance_exercise_solution.xlsx
XLSX
11.1 KB
7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf
PDF
289.1 KB
7.3 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx
XLSX
41.1 KB
8. A3. Normality and homoscedasticity.html
HTML
204.8 B
8. Correlation vs regression.html
HTML
204.8 B
8. Numerical variables. Using a frequency distribution table.mp4
MP4
25.8 MB
8. Numerical variables. Using a frequency distribution table.srt
SRT
4.3 KB
8. Standard Normal Distribution. Exercise.html
HTML
102.4 B
8. Standard deviation and coefficient of variation.mp4
MP4
45.2 MB
8. Standard deviation and coefficient of variation.srt
SRT
6 KB
8. Student's T distribution.mp4
MP4
35.4 MB
8. Student's T distribution.srt
SRT
4.2 KB
8. Studying regression tables.html
HTML
204.8 B
8. Test for the mean. Dependent samples. Exercise.html
HTML
102.4 B
8.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx
XLSX
11 KB
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx
XLSX
11.4 KB
8.1 3.4.Standard-normal-distribution-exercise-solution.xlsx
XLSX
24 KB
8.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx
XLSX
14.4 KB
8.2 3.4.Standard-normal-distribution-exercise.xlsx
XLSX
12 KB
8.2 4.7. Test for the mean. Dependent samples_exercise.xlsx
XLSX
12.8 KB
9. A geometrical representation of the linear regression model.mp4
MP4
4.9 MB
9. A geometrical representation of the linear regression model.srt
SRT
1.6 KB
9. A4. No autocorrelation.mp4
MP4
25.9 MB
9. A4. No autocorrelation.srt
SRT
4.5 KB
9. Numerical variables. Using a frequency distribution table.html
HTML
204.8 B
9. Regression tables. Exercise.html
HTML
102.4 B
9. Standard deviation.html
HTML
204.8 B
9. Student's T distribution.html
HTML
204.8 B
9. Test for the mean. Independent samples (Part 1).mp4
MP4
30 MB
9. Test for the mean. Independent samples (Part 1).srt
SRT
5.3 KB
9. Understanding the central limit theorem.mp4
MP4
62.9 MB
9. Understanding the central limit theorem.srt
SRT
5.5 KB
9.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx
XLSX
9.6 KB
9.1 5.10. Regression tables_exercise.xlsx
XLSX
12 KB
9.2 5.10. Regression tables_exercise_solution.xlsx
XLSX
12.5 KB
Readme.txt
TXT
921.6 B
[GigaCourse.com].url
URL
0 B

Description

Related Torrents

Location

Trackers

Tracker name
udp://tracker.opentrackr.org:1337/announce
udp://p4p.arenabg.com:1337/announce
udp://tracker.leechers-paradise.org:6969/announce
udp://9.rarbg.to:2710/announce
udp://9.rarbg.me:2710/announce
udp://exodus.desync.com:6969/announce
udp://open.stealth.si:80/announce
udp://tracker.cyberia.is:6969/announce
udp://tracker.sbsub.com:2710/announce
udp://retracker.lanta-net.ru:2710/announce
udp://tracker.tiny-vps.com:6969/announce
udp://tracker.torrent.eu.org:451/announce
udp://tracker.moeking.me:6969/announce
udp://bt1.archive.org:6969/announce
udp://tracker.zer0day.to:1337/announce
udp://tracker.leechers-paradise.org:6969/announce
udp://coppersurfer.tk:6969/announce
Torrent hash: