|
|
1. Install Anaconda package.mp4
|
MP4
|
48.1 MB
|
|
|
1. Install Anaconda package.srt
|
SRT
|
7.3 KB
|
|
|
1. Introduction to Course.mp4
|
MP4
|
12 MB
|
|
|
1. Introduction to Course.srt
|
SRT
|
2.4 KB
|
|
|
1. Introduction to Deep Learning.mp4
|
MP4
|
36.9 MB
|
|
|
1. Introduction to Deep Learning.srt
|
SRT
|
6.9 KB
|
|
|
1. Introduction to Supervised Learning Algorithms.mp4
|
MP4
|
6.3 MB
|
|
|
1. Introduction to Supervised Learning Algorithms.srt
|
SRT
|
1.3 KB
|
|
|
1. Review Unsupervised Learning Algorithms.mp4
|
MP4
|
8.5 MB
|
|
|
1. Review Unsupervised Learning Algorithms.srt
|
SRT
|
1.8 KB
|
|
|
10. Create K-means Clustering Algorithm Model in Python - 2.mp4
|
MP4
|
33 MB
|
|
|
10. Create K-means Clustering Algorithm Model in Python - 2.srt
|
SRT
|
3.7 KB
|
|
|
10. Machine Leaning Types.html
|
HTML
|
204 B
|
|
|
10. P-Value.mp4
|
MP4
|
17.4 MB
|
|
|
10. P-Value.srt
|
SRT
|
4.2 KB
|
|
|
10. The Newer Version of Keras Python code to Create the Model and Add the Layers.html
|
HTML
|
1.3 KB
|
|
|
11. Association Rules (Market Basket Analysis).mp4
|
MP4
|
52.2 MB
|
|
|
11. Association Rules (Market Basket Analysis).srt
|
SRT
|
11.5 KB
|
|
|
11. Course Rating.html
|
HTML
|
512 B
|
|
|
11. Create Artificial Neural Network Model in Python Part-4.mp4
|
MP4
|
22 MB
|
|
|
11. Create Artificial Neural Network Model in Python Part-4.srt
|
SRT
|
2.3 KB
|
|
|
11. Simple Linear Regression.mp4
|
MP4
|
3.7 MB
|
|
|
11. Simple Linear Regression.srt
|
SRT
|
1 KB
|
|
|
12. Concepts used in Machine Learning (Important).html
|
HTML
|
204 B
|
|
|
12. Course Rating.html
|
HTML
|
512 B
|
|
|
12. Overview on the business problem data.mp4
|
MP4
|
13.5 MB
|
|
|
12. Overview on the business problem data.srt
|
SRT
|
2 KB
|
|
|
12.1 GroceryStoreDataSet.csv
|
CSV
|
512 B
|
|
|
13. Create Association Rules (Market Basket Analysis) Model in Python - 1.mp4
|
MP4
|
69.4 MB
|
|
|
13. Create Association Rules (Market Basket Analysis) Model in Python - 1.srt
|
SRT
|
10.3 KB
|
|
|
13. Overview on the dataset.mp4
|
MP4
|
7.9 MB
|
|
|
13. Overview on the dataset.srt
|
SRT
|
1.5 KB
|
|
|
13.1 Study_Hours.csv
|
CSV
|
307 B
|
|
|
13.1 apyori.py
|
PY
|
14.2 KB
|
|
|
13.2 AR.py
|
PY
|
512 B
|
|
|
14. Create Association Rules (Market Basket Analysis) Model in Python - 2.mp4
|
MP4
|
33.3 MB
|
|
|
14. Create Association Rules (Market Basket Analysis) Model in Python - 2.srt
|
SRT
|
5.1 KB
|
|
|
14. Create Simple Linear Regression Model in Python-Part 1.mp4
|
MP4
|
30.9 MB
|
|
|
14. Create Simple Linear Regression Model in Python-Part 1.srt
|
SRT
|
5.5 KB
|
|
|
14.1 SLR.py
|
PY
|
1.2 KB
|
|
|
15. Create Association Rules (Market Basket Analysis) Model in Python - 3.mp4
|
MP4
|
28.6 MB
|
|
|
15. Create Association Rules (Market Basket Analysis) Model in Python - 3.srt
|
SRT
|
2.8 KB
|
|
|
15. Create Simple Linear Regression Model in Python-Part 2.mp4
|
MP4
|
129.3 MB
|
|
|
15. Create Simple Linear Regression Model in Python-Part 2.srt
|
SRT
|
13.2 KB
|
|
|
16. Create Simple Linear Regression Model in Python-Part 3.mp4
|
MP4
|
66.1 MB
|
|
|
16. Create Simple Linear Regression Model in Python-Part 3.srt
|
SRT
|
6.4 KB
|
|
|
17. Create Simple Linear Regression Model in Python-Part 4.mp4
|
MP4
|
70.3 MB
|
|
|
17. Create Simple Linear Regression Model in Python-Part 4.srt
|
SRT
|
6.9 KB
|
|
|
18. Multiple Linear Regression.mp4
|
MP4
|
14.2 MB
|
|
|
18. Multiple Linear Regression.srt
|
SRT
|
2.9 KB
|
|
|
19. Dummy Variables.mp4
|
MP4
|
36.4 MB
|
|
|
19. Dummy Variables.srt
|
SRT
|
5.8 KB
|
|
|
2. Course Contents.mp4
|
MP4
|
10.1 MB
|
|
|
2. Course Contents.srt
|
SRT
|
1.7 KB
|
|
|
2. Hierarchical Clustering Algorithm.mp4
|
MP4
|
9.9 MB
|
|
|
2. Hierarchical Clustering Algorithm.srt
|
SRT
|
4.1 KB
|
|
|
2. Types of Variables.mp4
|
MP4
|
10.3 MB
|
|
|
2. Types of Variables.srt
|
SRT
|
2.6 KB
|
|
|
2. Use Deep Learning in Classification.mp4
|
MP4
|
14.1 MB
|
|
|
2. Use Deep Learning in Classification.srt
|
SRT
|
2.7 KB
|
|
|
20. Dummy Variables Trap.html
|
HTML
|
614 B
|
|
|
21. Step-wise Approach.mp4
|
MP4
|
28.8 MB
|
|
|
21. Step-wise Approach.srt
|
SRT
|
7 KB
|
|
|
22. Assumptions of Multiple Linear Regression.mp4
|
MP4
|
31.3 MB
|
|
|
22. Assumptions of Multiple Linear Regression.srt
|
SRT
|
9.4 KB
|
|
|
23. Overview on the business problem data.mp4
|
MP4
|
8.7 MB
|
|
|
23. Overview on the business problem data.srt
|
SRT
|
1.5 KB
|
|
|
23.1 Companies spends and profits.csv
|
CSV
|
3.2 KB
|
|
|
24. Create Multiple Linear Regression Model in Python-Part 1.mp4
|
MP4
|
172.6 MB
|
|
|
24. Create Multiple Linear Regression Model in Python-Part 1.srt
|
SRT
|
16.9 KB
|
|
|
24.1 MLR.py
|
PY
|
2.1 KB
|
|
|
25. Create Multiple Linear Regression Model in Python-Part 2.mp4
|
MP4
|
141.3 MB
|
|
|
25. Create Multiple Linear Regression Model in Python-Part 2.srt
|
SRT
|
12.9 KB
|
|
|
26. Create Multiple Linear Regression Model in Python-Part 3.mp4
|
MP4
|
138.1 MB
|
|
|
26. Create Multiple Linear Regression Model in Python-Part 3.srt
|
SRT
|
11.6 KB
|
|
|
27. Create Multiple Linear Regression Model in Python-Part 4.mp4
|
MP4
|
82.3 MB
|
|
|
27. Create Multiple Linear Regression Model in Python-Part 4.srt
|
SRT
|
8 KB
|
|
|
28. Polynomial Regression.mp4
|
MP4
|
10.6 MB
|
|
|
28. Polynomial Regression.srt
|
SRT
|
2.3 KB
|
|
|
29. Overview on the business problem data.mp4
|
MP4
|
7.2 MB
|
|
|
29. Overview on the business problem data.srt
|
SRT
|
1.3 KB
|
|
|
29.1 Reward_system.csv
|
CSV
|
204 B
|
|
|
3. Data Types.html
|
HTML
|
204 B
|
|
|
3. Dendrogram Diagram Method.mp4
|
MP4
|
28.6 MB
|
|
|
3. Dendrogram Diagram Method.srt
|
SRT
|
6.9 KB
|
|
|
3. How Does Deep Learning Work.mp4
|
MP4
|
27.6 MB
|
|
|
3. How Does Deep Learning Work.srt
|
SRT
|
5.7 KB
|
|
|
3. Introduction to Data Mining.mp4
|
MP4
|
42.8 MB
|
|
|
3. Introduction to Data Mining.srt
|
SRT
|
10.8 KB
|
|
|
30. Create Polynomial Regression Model in Python-Part 1.mp4
|
MP4
|
79.4 MB
|
|
|
30. Create Polynomial Regression Model in Python-Part 1.srt
|
SRT
|
9.7 KB
|
|
|
30.1 PR.py
|
PY
|
1.7 KB
|
|
|
31. Create Polynomial Regression Model in Python-Part 2.mp4
|
MP4
|
124.4 MB
|
|
|
31. Create Polynomial Regression Model in Python-Part 2.srt
|
SRT
|
13.4 KB
|
|
|
32. Course Rating.html
|
HTML
|
512 B
|
|
|
33. Introduction to Classification.mp4
|
MP4
|
19.9 MB
|
|
|
33. Introduction to Classification.srt
|
SRT
|
4.7 KB
|
|
|
34. Introduction to Logistic Regression.mp4
|
MP4
|
29.1 MB
|
|
|
34. Introduction to Logistic Regression.srt
|
SRT
|
8.9 KB
|
|
|
35. Confusion Matrix.mp4
|
MP4
|
15.6 MB
|
|
|
35. Confusion Matrix.srt
|
SRT
|
4.5 KB
|
|
|
36. Standard Scaler.mp4
|
MP4
|
12.2 MB
|
|
|
36. Standard Scaler.srt
|
SRT
|
3.3 KB
|
|
|
37. Overview on the business problem data.mp4
|
MP4
|
10.3 MB
|
|
|
37. Overview on the business problem data.srt
|
SRT
|
1.8 KB
|
|
|
37.1 Bank_Data.csv
|
CSV
|
17.2 KB
|
|
|
38. Create Logistic Regression Model in Python-Part 1.mp4
|
MP4
|
112 MB
|
|
|
38. Create Logistic Regression Model in Python-Part 1.srt
|
SRT
|
12.9 KB
|
|
|
38.1 LR.py
|
PY
|
1.1 KB
|
|
|
39. Create Logistic Regression Model in Python-Part 2.mp4
|
MP4
|
59.6 MB
|
|
|
39. Create Logistic Regression Model in Python-Part 2.srt
|
SRT
|
6.8 KB
|
|
|
4. Activation Functions.mp4
|
MP4
|
34.8 MB
|
|
|
4. Activation Functions.srt
|
SRT
|
7.3 KB
|
|
|
4. Data Mining Definition.html
|
HTML
|
204 B
|
|
|
4. Introduction to Regression Model.mp4
|
MP4
|
21.3 MB
|
|
|
4. Introduction to Regression Model.srt
|
SRT
|
4.9 KB
|
|
|
4. Overview on the business problem data.mp4
|
MP4
|
4.2 MB
|
|
|
4. Overview on the business problem data.srt
|
SRT
|
819 B
|
|
|
40. KNN Classification Algorithm.mp4
|
MP4
|
15.3 MB
|
|
|
40. KNN Classification Algorithm.srt
|
SRT
|
4.4 KB
|
|
|
41. Create KNN Model in Python.mp4
|
MP4
|
65.2 MB
|
|
|
41. Create KNN Model in Python.srt
|
SRT
|
8.2 KB
|
|
|
41.1 K-NN.py
|
PY
|
1.2 KB
|
|
|
41.2 Bank_Data.csv
|
CSV
|
17.2 KB
|
|
|
42. Support Vector Machine (SVM) Classification Algorithm.mp4
|
MP4
|
17.8 MB
|
|
|
42. Support Vector Machine (SVM) Classification Algorithm.srt
|
SRT
|
4 KB
|
|
|
43. Create Support Vector Machine in Python.mp4
|
MP4
|
53.1 MB
|
|
|
43. Create Support Vector Machine in Python.srt
|
SRT
|
7.7 KB
|
|
|
43.1 SVM.py
|
PY
|
1.2 KB
|
|
|
44. Naive Bayes Algorithm Part 1.mp4
|
MP4
|
19.8 MB
|
|
|
44. Naive Bayes Algorithm Part 1.srt
|
SRT
|
5.2 KB
|
|
|
45. Naive Bayes Algorithm Part 2.mp4
|
MP4
|
27.9 MB
|
|
|
45. Naive Bayes Algorithm Part 2.srt
|
SRT
|
7 KB
|
|
|
46. Create Naive Bayes Model in Python.mp4
|
MP4
|
28.9 MB
|
|
|
46. Create Naive Bayes Model in Python.srt
|
SRT
|
3.8 KB
|
|
|
46.1 Naive_Bayes.py
|
PY
|
1.1 KB
|
|
|
47. Decision Tree Algorithm.mp4
|
MP4
|
34.5 MB
|
|
|
47. Decision Tree Algorithm.srt
|
SRT
|
7.9 KB
|
|
|
48. Create Decision Tree Model in Python.mp4
|
MP4
|
33.6 MB
|
|
|
48. Create Decision Tree Model in Python.srt
|
SRT
|
3.5 KB
|
|
|
48.1 Bank_Data.csv
|
CSV
|
17.2 KB
|
|
|
48.2 Decision Tree.py
|
PY
|
1.1 KB
|
|
|
49. Random Forest Algorithm.mp4
|
MP4
|
6.1 MB
|
|
|
49. Random Forest Algorithm.srt
|
SRT
|
1.4 KB
|
|
|
5. Create Hierarchical Clustering Algorithm in Python-1.mp4
|
MP4
|
128.3 MB
|
|
|
5. Create Hierarchical Clustering Algorithm in Python-1.srt
|
SRT
|
13.7 KB
|
|
|
5. Introduction to Machine Learning.mp4
|
MP4
|
14.3 MB
|
|
|
5. Introduction to Machine Learning.srt
|
SRT
|
3.1 KB
|
|
|
5. Regression Model.html
|
HTML
|
204 B
|
|
|
5. What is Tensorflow.mp4
|
MP4
|
7 MB
|
|
|
5. What is Tensorflow.srt
|
SRT
|
2.6 KB
|
|
|
5.1 Hierarchical Clustering.py
|
PY
|
1.2 KB
|
|
|
5.2 Movies.csv
|
CSV
|
1.7 KB
|
|
|
50. Create Random Forest Model in Python.mp4
|
MP4
|
69.4 MB
|
|
|
50. Create Random Forest Model in Python.srt
|
SRT
|
6.4 KB
|
|
|
50.1 Random_Forest.py
|
PY
|
1.2 KB
|
|
|
51. Course Rating.html
|
HTML
|
512 B
|
|
|
6. Create Hierarchical Clustering Algorithm in Python-2.mp4
|
MP4
|
72.1 MB
|
|
|
6. Create Hierarchical Clustering Algorithm in Python-2.srt
|
SRT
|
7.3 KB
|
|
|
6. Introduction to the Deep Learning Problem and Dataset.mp4
|
MP4
|
9 MB
|
|
|
6. Introduction to the Deep Learning Problem and Dataset.srt
|
SRT
|
1.1 KB
|
|
|
6. Machine Leaning Sub-fields..html
|
HTML
|
204 B
|
|
|
6. Regression Model Slope.mp4
|
MP4
|
31.2 MB
|
|
|
6. Regression Model Slope.srt
|
SRT
|
7.4 KB
|
|
|
7. Create Artificial Neural Network Model in Python Part-1.mp4
|
MP4
|
64.9 MB
|
|
|
7. Create Artificial Neural Network Model in Python Part-1.srt
|
SRT
|
7 KB
|
|
|
7. How Does Machine Learning Work.mp4
|
MP4
|
19.5 MB
|
|
|
7. How Does Machine Learning Work.srt
|
SRT
|
4.5 KB
|
|
|
7. K-means Clustering Algorithm.mp4
|
MP4
|
16.2 MB
|
|
|
7. K-means Clustering Algorithm.srt
|
SRT
|
4 KB
|
|
|
7. Regression Slope.html
|
HTML
|
204 B
|
|
|
7.1 M_ANN.py
|
PY
|
1.5 KB
|
|
|
7.2 Medical_data.csv
|
CSV
|
23.5 KB
|
|
|
8. Create Artificial Neural Network Model in Python Part-2.mp4
|
MP4
|
69 MB
|
|
|
8. Create Artificial Neural Network Model in Python Part-2.srt
|
SRT
|
9.9 KB
|
|
|
8. The Intercept Value.html
|
HTML
|
204 B
|
|
|
8. Train and Test Sets..html
|
HTML
|
204 B
|
|
|
8. Using Elbow Method to Determine Optimal Number of Clusters.mp4
|
MP4
|
48.8 MB
|
|
|
8. Using Elbow Method to Determine Optimal Number of Clusters.srt
|
SRT
|
11.3 KB
|
|
|
9. Create Artificial Neural Network Model in Python Part-3.mp4
|
MP4
|
65.6 MB
|
|
|
9. Create Artificial Neural Network Model in Python Part-3.srt
|
SRT
|
6.5 KB
|
|
|
9. Create K-means Clustering Algorithm Model in Python - 1.mp4
|
MP4
|
78.6 MB
|
|
|
9. Create K-means Clustering Algorithm Model in Python - 1.srt
|
SRT
|
8.6 KB
|
|
|
9. Machine Learning Algorithms Types.mp4
|
MP4
|
40.8 MB
|
|
|
9. Machine Learning Algorithms Types.srt
|
SRT
|
8.2 KB
|
|
|
9. R-Squared.mp4
|
MP4
|
29.1 MB
|
|
|
9. R-Squared.srt
|
SRT
|
8.2 KB
|
|
|
9.1 Link to the Keras documentation website..html
|
HTML
|
102 B
|
|
|
9.1 kmeans.py
|
PY
|
1.2 KB
|
|
|
9.2 Movies.csv
|
CSV
|
1.7 KB
|
|
|
TutsNode.com.txt
|
TXT
|
102 B
|
|
|
[TGx]Downloaded from torrentgalaxy.to .txt
|
TXT
|
614 B
|