|
|
01. Apresentando Alexis-38ExGpdyvJI.en.vtt
|
VTT
|
694 B
|
|
|
01. Apresentando Alexis-38ExGpdyvJI.mp4
|
MP4
|
2.23 MB
|
|
|
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt
|
VTT
|
599 B
|
|
|
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt
|
VTT
|
615 B
|
|
|
01. Introducing Alexis.html
|
HTML
|
10.79 KB
|
|
|
02. Aplicacoes de CNNs-HrYNL_1SV2Y.en.vtt
|
VTT
|
5.37 KB
|
|
|
02. Aplicacoes de CNNs-HrYNL_1SV2Y.mp4
|
MP4
|
23.75 MB
|
|
|
02. Aplicacoes de CNNs-HrYNL_1SV2Y.pt-BR.vtt
|
VTT
|
5.66 KB
|
|
|
02. Aplicacoes de CNNs-HrYNL_1SV2Y.zh-CN.vtt
|
VTT
|
4.7 KB
|
|
|
02. Applications of CNNs.html
|
HTML
|
16.69 KB
|
|
|
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.en.vtt
|
VTT
|
1.26 KB
|
|
|
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.mp4
|
MP4
|
4.68 MB
|
|
|
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.pt-BR.vtt
|
VTT
|
1.3 KB
|
|
|
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.zh-CN.vtt
|
VTT
|
1.07 KB
|
|
|
03. Lesson Outline.html
|
HTML
|
11.97 KB
|
|
|
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.en.vtt
|
VTT
|
2.82 KB
|
|
|
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.mp4
|
MP4
|
3.64 MB
|
|
|
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.pt-BR.vtt
|
VTT
|
2.64 KB
|
|
|
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.zh-CN.vtt
|
VTT
|
2.4 KB
|
|
|
04. MNIST Dataset.html
|
HTML
|
11.22 KB
|
|
|
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.en.vtt
|
VTT
|
3.84 KB
|
|
|
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.mp4
|
MP4
|
9.15 MB
|
|
|
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.pt-BR.vtt
|
VTT
|
4.07 KB
|
|
|
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.zh-CN.vtt
|
VTT
|
3.27 KB
|
|
|
05. How Computers Interpret Images.html
|
HTML
|
12.68 KB
|
|
|
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.en.vtt
|
VTT
|
3.11 KB
|
|
|
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.mp4
|
MP4
|
5.51 MB
|
|
|
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.pt-BR.vtt
|
VTT
|
3.16 KB
|
|
|
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.zh-CN.vtt
|
VTT
|
2.59 KB
|
|
|
06. MLP Structure _ Class Scores.html
|
HTML
|
11.34 KB
|
|
|
07. 04 Do Your Research V1-CR4JeAn1fgk.en.vtt
|
VTT
|
2.69 KB
|
|
|
07. 04 Do Your Research V1-CR4JeAn1fgk.mp4
|
MP4
|
6.43 MB
|
|
|
07. 04 Do Your Research V1-CR4JeAn1fgk.pt-BR.vtt
|
VTT
|
2.8 KB
|
|
|
07. 04 Do Your Research V1-CR4JeAn1fgk.zh-CN.vtt
|
VTT
|
2.22 KB
|
|
|
07. Do Your Research.html
|
HTML
|
10.58 KB
|
|
|
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.en.vtt
|
VTT
|
7.51 KB
|
|
|
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.mp4
|
MP4
|
6.55 MB
|
|
|
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.pt-BR.vtt
|
VTT
|
7.48 KB
|
|
|
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.zh-CN.vtt
|
VTT
|
6.12 KB
|
|
|
08. Loss _ Optimization.html
|
HTML
|
10.68 KB
|
|
|
09. 06 Defining A Network V1-9gvaQvyfLfY.en.vtt
|
VTT
|
7.13 KB
|
|
|
09. 06 Defining A Network V1-9gvaQvyfLfY.mp4
|
MP4
|
9.78 MB
|
|
|
09. 06 Defining A Network V1-9gvaQvyfLfY.pt-BR.vtt
|
VTT
|
6.84 KB
|
|
|
09. 06 Defining A Network V1-9gvaQvyfLfY.zh-CN.vtt
|
VTT
|
6.01 KB
|
|
|
09. Defining a Network in PyTorch.html
|
HTML
|
11.75 KB
|
|
|
10. 07 Training The Network V1-904bfqibcCw.en.vtt
|
VTT
|
6.54 KB
|
|
|
10. 07 Training The Network V1-904bfqibcCw.mp4
|
MP4
|
10.52 MB
|
|
|
10. 07 Training The Network V1-904bfqibcCw.pt-BR.vtt
|
VTT
|
6.12 KB
|
|
|
10. 07 Training The Network V1-904bfqibcCw.zh-CN.vtt
|
VTT
|
5.4 KB
|
|
|
10. Training the Network.html
|
HTML
|
12.43 KB
|
|
|
11. Pre-Notebook MLP Classification, Exercise.html
|
HTML
|
11.89 KB
|
|
|
12. Notebook MLP Classification, MNIST.html
|
HTML
|
11.01 KB
|
|
|
13. 09 One Solution V2-7q37WPjQhDA.en.vtt
|
VTT
|
7.93 KB
|
|
|
13. 09 One Solution V2-7q37WPjQhDA.mp4
|
MP4
|
11.59 MB
|
|
|
13. 09 One Solution V2-7q37WPjQhDA.pt-BR.vtt
|
VTT
|
7.6 KB
|
|
|
13. 09 One Solution V2-7q37WPjQhDA.zh-CN.vtt
|
VTT
|
6.66 KB
|
|
|
13. One Solution.html
|
HTML
|
11.99 KB
|
|
|
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.en.vtt
|
VTT
|
4.62 KB
|
|
|
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.mp4
|
MP4
|
3.34 MB
|
|
|
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.pt-BR.vtt
|
VTT
|
4.35 KB
|
|
|
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.zh-CN.vtt
|
VTT
|
3.83 KB
|
|
|
14. Model Validation.html
|
HTML
|
10.61 KB
|
|
|
15. 11 Validation Loss V2-uGPP_-pbBsc.en.vtt
|
VTT
|
8.76 KB
|
|
|
15. 11 Validation Loss V2-uGPP_-pbBsc.mp4
|
MP4
|
14.23 MB
|
|
|
15. 11 Validation Loss V2-uGPP_-pbBsc.pt-BR.vtt
|
VTT
|
8.43 KB
|
|
|
15. 11 Validation Loss V2-uGPP_-pbBsc.zh-CN.vtt
|
VTT
|
7.34 KB
|
|
|
15. Validation Loss.html
|
HTML
|
11.49 KB
|
|
|
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.en.vtt
|
VTT
|
1.75 KB
|
|
|
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.mp4
|
MP4
|
2.4 MB
|
|
|
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.pt-BR.vtt
|
VTT
|
1.67 KB
|
|
|
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.zh-CN.vtt
|
VTT
|
1.45 KB
|
|
|
16. Image Classification Steps.html
|
HTML
|
10.66 KB
|
|
|
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.en.vtt
|
VTT
|
3.04 KB
|
|
|
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.mp4
|
MP4
|
4.24 MB
|
|
|
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.pt-BR.vtt
|
VTT
|
2.97 KB
|
|
|
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.zh-CN.vtt
|
VTT
|
2.56 KB
|
|
|
17. MLPs vs CNNs.html
|
HTML
|
10.88 KB
|
|
|
18. Local Connectivity-z9wiDg0w-Dc.en.vtt
|
VTT
|
8.95 KB
|
|
|
18. Local Connectivity-z9wiDg0w-Dc.mp4
|
MP4
|
12.02 MB
|
|
|
18. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt
|
VTT
|
9.29 KB
|
|
|
18. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt
|
VTT
|
7.62 KB
|
|
|
18. Local Connectivity.html
|
HTML
|
10.58 KB
|
|
|
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.en.vtt
|
VTT
|
2.11 KB
|
|
|
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.mp4
|
MP4
|
2.95 MB
|
|
|
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.pt-BR.vtt
|
VTT
|
2.11 KB
|
|
|
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.zh-CN.vtt
|
VTT
|
1.77 KB
|
|
|
19. Filters and the Convolutional Layer.html
|
HTML
|
10.67 KB
|
|
|
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.en.vtt
|
VTT
|
1.61 KB
|
|
|
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.mp4
|
MP4
|
3.5 MB
|
|
|
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.pt-BR.vtt
|
VTT
|
1.63 KB
|
|
|
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.zh-CN.vtt
|
VTT
|
1.38 KB
|
|
|
20. Filters _ Edges.html
|
HTML
|
11.16 KB
|
|
|
21. Frequency in Images.html
|
HTML
|
12.82 KB
|
|
|
22. High-pass Filters-OpcFn_H2V-Q.en.vtt
|
VTT
|
7.56 KB
|
|
|
22. High-pass Filters-OpcFn_H2V-Q.mp4
|
MP4
|
8.25 MB
|
|
|
22. High-pass Filters-OpcFn_H2V-Q.pt-BR.vtt
|
VTT
|
8.22 KB
|
|
|
22. High-pass Filters-OpcFn_H2V-Q.zh-CN.vtt
|
VTT
|
6.57 KB
|
|
|
22. High-pass Filters.html
|
HTML
|
11.77 KB
|
|
|
23. Quiz Kernels.html
|
HTML
|
11.68 KB
|
|
|
24. OpenCV _ Creating Custom Filters.html
|
HTML
|
12.95 KB
|
|
|
25. Notebook Finding Edges.html
|
HTML
|
10.98 KB
|
|
|
26. Convolutional Layer.html
|
HTML
|
13.05 KB
|
|
|
27. Camadas convolucionais-RnM1D-XI--8.en.vtt
|
VTT
|
9.99 KB
|
|
|
27. Camadas convolucionais-RnM1D-XI--8.mp4
|
MP4
|
17.05 MB
|
|
|
27. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt
|
VTT
|
11 KB
|
|
|
27. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt
|
VTT
|
8.71 KB
|
|
|
27. Convolutional Layers (Part 2).html
|
HTML
|
11.44 KB
|
|
|
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.en.vtt
|
VTT
|
3.61 KB
|
|
|
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.mp4
|
MP4
|
6.09 MB
|
|
|
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.pt-BR.vtt
|
VTT
|
3.86 KB
|
|
|
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.zh-CN.vtt
|
VTT
|
2.97 KB
|
|
|
28. Stride and Padding.html
|
HTML
|
10.62 KB
|
|
|
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.en.vtt
|
VTT
|
2.9 KB
|
|
|
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.mp4
|
MP4
|
2.98 MB
|
|
|
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.pt-BR.vtt
|
VTT
|
3.2 KB
|
|
|
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.zh-CN.vtt
|
VTT
|
2.35 KB
|
|
|
29. Pooling Layers.html
|
HTML
|
12.63 KB
|
|
|
30. Notebook Layer Visualization.html
|
HTML
|
10.99 KB
|
|
|
31. Capsule Networks.html
|
HTML
|
14.67 KB
|
|
|
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.en.vtt
|
VTT
|
4.23 KB
|
|
|
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.mp4
|
MP4
|
4.9 MB
|
|
|
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.pt-BR.vtt
|
VTT
|
4.41 KB
|
|
|
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.zh-CN.vtt
|
VTT
|
3.55 KB
|
|
|
32. Increasing Depth.html
|
HTML
|
10.69 KB
|
|
|
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.en.vtt
|
VTT
|
4.74 KB
|
|
|
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.mp4
|
MP4
|
5.75 MB
|
|
|
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.pt-BR.vtt
|
VTT
|
5.07 KB
|
|
|
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.zh-CN.vtt
|
VTT
|
3.9 KB
|
|
|
33. CNNs for Image Classification.html
|
HTML
|
16.01 KB
|
|
|
34. Convolutional Layers in PyTorch.html
|
HTML
|
22.32 KB
|
|
|
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.en.vtt
|
VTT
|
3.87 KB
|
|
|
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.mp4
|
MP4
|
5.37 MB
|
|
|
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.pt-BR.vtt
|
VTT
|
3.9 KB
|
|
|
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.zh-CN.vtt
|
VTT
|
3.28 KB
|
|
|
35. Feature Vector.html
|
HTML
|
10.65 KB
|
|
|
36. Pre-Notebook CNN Classification.html
|
HTML
|
12.31 KB
|
|
|
37. Notebook CNNs for CIFAR Image Classification.html
|
HTML
|
11.05 KB
|
|
|
38. 23 Cifar Class V1-FF_EmZ2sf2w.en.vtt
|
VTT
|
8.39 KB
|
|
|
38. 23 Cifar Class V1-FF_EmZ2sf2w.mp4
|
MP4
|
12.83 MB
|
|
|
38. 23 Cifar Class V1-FF_EmZ2sf2w.pt-BR.vtt
|
VTT
|
8.62 KB
|
|
|
38. 23 Cifar Class V1-FF_EmZ2sf2w.zh-CN.vtt
|
VTT
|
7.07 KB
|
|
|
38. CIFAR Classification Example.html
|
HTML
|
11.57 KB
|
|
|
39. 24 CNNs PyTorch V2-GNxzWfiz3do.en.vtt
|
VTT
|
8.26 KB
|
|
|
39. 24 CNNs PyTorch V2-GNxzWfiz3do.mp4
|
MP4
|
12.6 MB
|
|
|
39. 24 CNNs PyTorch V2-GNxzWfiz3do.pt-BR.vtt
|
VTT
|
8.11 KB
|
|
|
39. 24 CNNs PyTorch V2-GNxzWfiz3do.zh-CN.vtt
|
VTT
|
6.9 KB
|
|
|
39. CNNs in PyTorch.html
|
HTML
|
10.99 KB
|
|
|
40. Image Augmentation In Keras-zQnx2jZmjTA.en.vtt
|
VTT
|
4.56 KB
|
|
|
40. Image Augmentation In Keras-zQnx2jZmjTA.mp4
|
MP4
|
4.93 MB
|
|
|
40. Image Augmentation In Keras-zQnx2jZmjTA.pt-BR.vtt
|
VTT
|
4.53 KB
|
|
|
40. Image Augmentation In Keras-zQnx2jZmjTA.zh-CN.vtt
|
VTT
|
3.87 KB
|
|
|
40. Image Augmentation.html
|
HTML
|
10.62 KB
|
|
|
41. 26 Augmentation V1-J_gjHVt9pVw.en.vtt
|
VTT
|
3.42 KB
|
|
|
41. 26 Augmentation V1-J_gjHVt9pVw.mp4
|
MP4
|
7.62 MB
|
|
|
41. 26 Augmentation V1-J_gjHVt9pVw.pt-BR.vtt
|
VTT
|
3.26 KB
|
|
|
41. 26 Augmentation V1-J_gjHVt9pVw.zh-CN.vtt
|
VTT
|
2.89 KB
|
|
|
41. Augmentation Using Transformations.html
|
HTML
|
11.08 KB
|
|
|
42. Groundbreaking CNN Architectures-GdYOqihgb2k.en.vtt
|
VTT
|
3.59 KB
|
|
|
42. Groundbreaking CNN Architectures-GdYOqihgb2k.mp4
|
MP4
|
7.32 MB
|
|
|
42. Groundbreaking CNN Architectures-GdYOqihgb2k.pt-BR.vtt
|
VTT
|
3.86 KB
|
|
|
42. Groundbreaking CNN Architectures-GdYOqihgb2k.zh-CN.vtt
|
VTT
|
3.17 KB
|
|
|
42. Groundbreaking CNN Architectures.html
|
HTML
|
12.09 KB
|
|
|
43. Visualizando CNNs-mnqS_EhEZVg.en.vtt
|
VTT
|
3.87 KB
|
|
|
43. Visualizando CNNs-mnqS_EhEZVg.mp4
|
MP4
|
9.2 MB
|
|
|
43. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt
|
VTT
|
3.83 KB
|
|
|
43. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt
|
VTT
|
3.33 KB
|
|
|
43. Visualizing CNNs (Part 1).html
|
HTML
|
13.15 KB
|
|
|
44. Visualizing CNNs (Part 2).html
|
HTML
|
17.47 KB
|
|
|
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.en.vtt
|
VTT
|
2.03 KB
|
|
|
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.mp4
|
MP4
|
3.66 MB
|
|
|
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.pt-BR.vtt
|
VTT
|
2.16 KB
|
|
|
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.zh-CN.vtt
|
VTT
|
1.72 KB
|
|
|
45. Summary of CNNs.html
|
HTML
|
10.66 KB
|
|
|
46. Introduction to GPU Workspaces.html
|
HTML
|
21.19 KB
|
|
|
47. Workspace Playground.html
|
HTML
|
10.71 KB
|
|
|
48. GPU Workspace Playground.html
|
HTML
|
10.86 KB
|
|
|
img.zip
|
ZIP
|
12.05 MB
|
|
|
index.html
|
HTML
|
8.14 KB
|